毕业论文论文范文课程设计实践报告法律论文英语论文教学论文医学论文农学论文艺术论文行政论文管理论文计算机安全
您现在的位置: 毕业论文 >> 教学论文 >> 正文

高中数学课堂中问题引入艺术初探

更新时间:2011-9-30:  来源:毕业论文

经过反复实践、多方借鉴、不断总结,发现高中数学课堂的引入设计也是有多种模式可循的。在设计引入问题时,不管这样的设计都必须考虑到以下四个环节:①“描述”:“我是怎样设计的”;②“领悟”:“我这样设计意味着什么”,寻找隐藏在设计背后的假说、观念等;③“正视”:“我怎么会这样设计”,以了解自己的假说、观念或设计活动中的其他因素;④“改造”:“我怎样才能更加有效地进行问题设计”,寻求完善创造性设计的方法和途径。
一、类比法
案例:第六章《不等式》中,“绝对值不等式”第一课时的课堂引入可以这样设计:我们已经知道 ,对于任意两个实数a,b,有 , ,那么 成立吗?学生很快可以通过举反例发现,这两个式子并不成立,那么必须进一步思考: 与 之间有没有联系呢?进而引出本课研究的绝对值不等式:  。
类比思维的认识依据是事物间具有相似性.类比也是发现真理的主要工具。从数学问题的发现或提出新命题的过程来看,大量也是从具体问题或素材出发,经过类比——联想等途径,形成命题(猜想)再加以确认的。教材中属性相似的内容占有较大比例,如指数函数与对数函数;四种三角函数及反三角函数;等差数列与等比数列;四种二次曲线(圆、椭圆、抛物线、双曲线);空间几何性质与平面几何性质;三种多面体及四种旋转体等。在教学时,可抓住其发生过程、内涵、结构、性质以及解决问题的数学思想方法等方面的相似性来设计问题的引入,由此及彼,触类旁通。

二、归纳法
案例:在“等差数列”第一课时的教学中,我这样设计的:
观察下列各数列,你能发现它们有什么共同的特点?具有什么性质?
①1,2,3,4,5,6,7,8,…
②3,6,9,12,15,18,21,24,…
③-1,-3,-5,-7,-9,-11,-13,-15,…
④2,2,2,2,2,2,2,2,2,…
这样设计可以培养学生观察能力、抽象概括能力。它具有启发性、开放性,有能力发展点,个性和创新精神培养点。学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。
从个别的或特殊的经验事实出毕业论文http://www.lwfree.cn/ 发而概括得出一般原理的思维方法即归纳法在数学思想方法是比较常用的一种,是发现真理的主要工具。从数学问题的发现或提出新命题的过程看,大量是从具体问题或素材出发,经过归纳、观察、实验等不同的途径,形成命题(猜想)再加以确认.教材中大量的概念及部分公式、定理都是使用归纳法来验证与推导的。按照“观察—猜想—证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。
三、实验法
案例:《椭圆及其标准方程》第一课时的设计如下:课前,将事先准备好的圆形纸片给每位同学发一张,让大家按这样的步骤进行,①在圆内部任意找一个不同于圆心的点A;②在圆周上30个等分点,分别记为B1、B2、…、B30;③折叠圆纸片,使圆周上的点B1与点A重合,展开纸片后得到一条折痕;④重复上一步骤,使圆周上其余各点与A点重合,得到30条对应的折痕;⑤最后展开纸片,可以发现未被折痕覆盖到的区域正是一个椭圆的形状。
这样的引入方法比之常规引入法更新颖、更具吸引力,使学生感性地认识椭圆这一几何图形,尤其是通过操作实验,营造了“做”数学的氛围,为学生创造了良好的智力环境,促使学生积极主动地参与进来。
四、整合法
案例:在直线的四种特殊方程的教学过程中,由于学生初中时就已经很熟悉的直线方程 出发,给出名称“斜截式”,再由此方程求已知斜率k、过点P(x0,y0)直线方程,由 得 ,代入 得 ,整理后即为“点斜式”方程 。
这样的处理与教材中先介绍“点斜式”再得出“斜截式”的顺序不同,但这样的顺序却更符合学生认知规律,由旧知得出新知,循序渐进,体现了初高中数学的巧妙衔接。整合就是“打乱”教科书上线性排列的知识,注重不同领域内容的整合、数学与其他学科知识的整合、知识与情境的整合、知识与方法的整合、知识与价值的整合,有助于学生领悟数学不是一堆孤立技巧和任意法则的集合,有利于学生对数学内在本质的认识,这是将形式化数学的学术形态转化为易于学生接受的教育形态的艺术之一。2042

[1] [2] 下一页

高中数学课堂中问题引入艺术初探下载如图片无法显示或论文不完整,请联系qq752018766
设为首页 | 联系站长 | 友情链接 | 网站地图 |

copyright©lwfree.cn 六维论文网 严禁转载
如果本毕业论文网损害了您的利益或者侵犯了您的权利,请及时联系,我们一定会及时改正。