CAD/CAM for Five-axis Machining of Integral Impeller by UG 本文来自六~维)论'文`网，毕业论文 www.lwfree.cn 加7位QQ324~9114找原文

Abstract:
Impeller is an important and typical machine part in mechanical equipment industry.It ' s widely used in energy, aviation, petroleum, chemical and metallurgical industries.The known edges of aerodynamics and hydro dynamics are needed in impeller modeling.The manufacturing method, cutting precision and quality of impeller playa n important role in its performance.The machining technology advances with each passing day in the influences of numerical control technology and CAM technology.
On the basis of seriously studying the Integral impeller is aided by UG. And the high-speed machining is finished by HS664 5-axis CNC processing center in laboratory.First the characteristics of five-axis NC machine tools, high-speed milling technology, CAD/CAM and Surface machining are studied. When the tool, machining methods, the size of blank and machining coordinate system have been determined, using UG "processing" function module automatically generate a 5-axis NC machining process track, the tool path. And use their "2D simulation" simulation function, Simulation five axis CNC track, the tool path.
Verify the feasibility and rationality track, using UG built-in post-processing function module, Generated the Fidia NC system of NC code file the tool path. Will the NC file keyword 5-axis NC machine tools, with three claws chuck way clamping work-piece, Setting processing coordinate system, complete set of knives, tool length, after such experiment processing preparation.For the coarse and fine machining of impeller.Complete sample try cutting. The whole design process and from CAD model, NC process analysis, Track the tool path generation, The tool path 2D simulation, 5-axis NC code generation, Laboratory sample try cutting.
Keywords: five-axis NC machining; High-speed NC machining; CAD/CAM; surface design principles

1 绪论 1
1.1选题背景及课题意义 1
1.1.1 选题背景 1
1.1.2 课题意义 1
1.2 五轴联动高速加工技术 2
1.2.1 五轴联动数控机床 2
1.2.2 高速铣削加工技术 3
1.2.4 曲面造型 7
1.3国内外发展现状 8
1.3.1 五轴联动数控机床 9
1.3.2 高速铣削加工技术 9
1.3.4 曲面造型 9
1.4 主要研究内容 10
2 叶轮模型建模 12
2.1 UG NX简介 12
2.2 叶轮模型建模过程 12
3 叶轮加工工艺设计 17
3.1 五轴数控加工工艺与传统加工工艺 17
3.2 加工工艺及装备分析 19
4 UG计算机辅助制造 21
4.1 选择加工环境 21
4.2 创建程序 21
4.3 创建几何体 22
4.31创建机床坐标系和安全平面 22
4.32 创建部件几何体 23
4.4 创建刀具 23
4.5 流道加工 24
4.5.1插入操作 24
4.5.2指定切削区域 25
4.5.3设置驱动方法 25
4.5.4设置投影矢量与刀轴 25
4.5.5设置切削参数 26
4.5.6设置非切削移动参数 26
4.5.7 设置进给率和速度 27
4.5.8 生成刀路轨迹并仿真 28
4.6 叶片粗加工 29
4.6.1插入操作 29
4.6.2指定切削区域 29
4.6.3设置驱动方法 30
4.6.4设置投影矢量与刀轴 31
4.6.5生成刀路轨迹并仿真 33
4.7叶片精加工 33
4.7.1 复制粘贴操作 33
4.7.2 重新定义操作 33
4.7.3生成刀路轨迹仿真 34
4.7.4变换刀路轨迹 34
4.7.5 整体2D仿真 35
5 后置处理生成NC程序 36
5.1 后置处理技术 36
5.1.1 后置处理概念 36
5.1.2 后置处理的主要任务 36
5.1.3 后置处理技术的产生 37
5.2 后置处理过程 37
5.2.1 后置处理流程 38
5.2.2 菲迪亚HS664五轴高速铣削加工中心后置处理 38
6 整体叶轮的五轴数控加工试验 41
6.1 五轴数控机床 41
6.1.1 机床结构 41
6.1.2 五轴结构 42
6.1.3 数控系统 43
6.1.4 机床主要参数 44
6.2 实验准备 44
6.2.1 刀具准备 44
6.2.2 毛坯准备 46
6.2.3 刀具，毛坯安装 46
6.3 样件试切试验 47
6.3.1 程序输入 47
6.3.2 对刀过程 47
6.3.3 刀具表设置 50
6.3.4 程序读取 50
6.3.5 加工过程 51
7 总结 54

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]  ... 下一页  >>