毕业论文

打赏
当前位置: 毕业论文 > 化学论文 >

细菌纤维素/羧甲基纤维素钠复合膜的制备与表征

时间:2019-01-17 11:54来源:毕业论文
向发酵培养基中加入0.1%、0.2%、0.3%和0.4%含量的羧甲基纤维素钠制备细菌纤维素/羧甲基纤维素钠(CMC)复合膜,测定复合膜的干重、含水量、复水率及拉伸强度等指标

摘要:细菌纤维素(Bacterial Cellulose, BC)是公认的性能优异的新型生物材料和组织工程支架材料,具有良好的生物相容性、生物降解性、高持水性和良好的机械性能。本实验研究向发酵培养基中加入0.1%、0.2%、0.3%和0.4%含量的羧甲基纤维素钠制备细菌纤维素/羧甲基纤维素钠(CMC)复合膜,测定复合膜的干重、含水量、复水率及拉伸强度等指标,结果表明,在CMC的浓度为0.1%时,膜的干重最大值为0.64g;CMC浓度为0.4%时,含水率和复水率分别是94.00%和92.29%;当CMC的浓度为0.1%其拉伸强度最大为32.23MPa;红外光谱图说明CMC被结合到BC上。32876
毕业论文关键词: 木醋杆菌;细菌纤维素;羧甲基纤维素钠;复合膜;红外
Preparation and Characterization of Bacterial Cellulose/Sodium Carboxymethyl Cellulose Composite Membrane
Abstract: Bacterial Cellulose is recognized as the outstanding new biological materials and tissue engineering scaffolds, it has some properties, such as biocompatible, biodegradable, high water holding capacity and good mechanical properties. Sodium carboxymethyl (1%, 2%, 3% and 4%) were added into the BC fermentation medium to prepare BC/CMC composites. The dry weight, water concent, recovery rate of water ,the tensile strength of BC/CMC were measured,and other method. The results showed that when the concentration of CMC was 1%, the maximum dry weight of the membrane is 0.64g; when the concentration of CMC was 0.4%,the water content and rehydration rate, were the biggest 94% and 92.29% respectively; the tensile strength was the biggest 32.23MPa when the concentration of CMC was 0.1%, infrared spectra indicates that CMC was bonded to the BC. 源自$六l维,论:文w网)加7位QQ3249^114 www.lwfree.cn
Key words: Acetobacter xylinum; Bacterial cellulose; Sodium carboxymethyl cellulose; Composite membranes; FTIR
目 录
1 前言    1
1.1 细菌纤维素简介    1
1.1.1 细菌纤维素的结构    1
1.1.2 细菌纤维素的性质    2
1.1.3 细菌纤维素的用途    3
1.2 羧甲基纤维素钠简介    6
1.2.1 羧甲基纤维素钠的性质与结构    6
1.2.2 羧甲基纤维素钠的应用    7
1.3 复合材料    8
1.3.1 复合材料的简介    8
1.3.2 复合材料的性能改善    8
1.4 研究目的和意义    9
2 材料和方法    11
2.1 实验材料    11
2.2 实验方法    12
2.1.1 细菌纤维素膜发酵培养基及培养    12
2.1.2 细菌纤维素膜处理    12
2.1.3 干重的测试    12
2.1.4 含水率的测试    12
2.1.5 复水率的测定    12
2.1.6 红外光谱分析    12
2.1.7 拉伸强度测试    13
3 结果与讨论    14
3.1 CMC的浓度对BC复合膜干重的影响    14
3.2 CMC的浓度对BC复合膜含水率的影响    14
3.3 CMC的浓度对BC复合膜复水率的影响    15
3.4 红外光谱的测定    16
3.5 拉伸强度实验    17
4 结论    18
5 心得与展望    19
致谢    20
参考文献    21
1 前言
1.1 细菌纤维素简介
1.1.1 细菌纤维素的结构
细菌纤维素是葡萄糖分子以β-1,4糖苷键聚合而形成的无分支的高分子,这样的线性葡萄糖链通过分子间与分子内氢键将连接形成网状结构。在细菌纤维形成的过程中,这些分子的聚合与结晶特性发生了改变,并且形成了极细的细菌纤维素结构,于是这就细菌纤维素良好的机械性能的主要原因,这样的性能主要体现为较强的吸水性和亲水性等[1]。静态培养法是制备细菌纤维膜的主要方法,其弹性模量是一般纤维的数倍甚至十倍以上,其抗撕裂能力是同样厚度的聚乙烯与聚氯乙烯的六倍,纯木葡糖酸醋杆菌发酵的干膜的弹性模量可高达15×109 Pa,这一般是普通平面定向以及非定向有机聚合物膜片的弹性模量3倍以上[2]。 细菌纤维素/羧甲基纤维素钠复合膜的制备与表征:http://www.lwfree.cn/huaxue/20190117/29671.html
------分隔线----------------------------
推荐内容