## 基于matlab的高斯投影换算+代码

Abstract In engineering and application, we often encounter the problem of calculation of length, area, Angle. If dealing these problems on the reference ellipsoid ,it will be of great amount of calculation and error .According to certain mathematical formula projection to Gauss plane, it will become simple to calculate the length, Angle, area with high precision . And in practice, though providing the coordinates of  6°,in order to meet the precision of large scale mapping,we need to change the coordinates of  6°band  into 3 ° band . 源Z自-六+维L论W文W网^www.lwfree.cn
In this paper, based on MATLAB , according to the basic knowledge of geodesy survey, using the positive and negative of Gauss projection calculation formula for programming is the main idea.According to the accuracy requirement of 0.001 m, I select the first four items of expanded equation of Gauss positive formula . In the negative of Gauss formula, the key to solve it is to make sure the precision of pedal latitude meeting the precision of 0.0001 ". For Gauss projection in changing band, first, calculated by using the positive of Gauss projection formula can get the coordinate of latitude and longitude.Then using the coordinate of latitude and longitude with the negative of Gaussian projection formula will get the final coordinate of new band. Finally Gauss projection conversion problem will be solved by the concise interface of GUI of MATLAB.
Key words: MATLAB, Gauss positive formula, Gauss negative formula , change band of Gauss projection.

Abstract    II
1  绪论    - 1 -
1.1  研究目的与意义    - 1 -
1.2  国内外研究情况    - 1 -
1.3  研究方法与步骤    - 1 -
2  MATLAB简介    - 2 -
2.1  变量名命名规则    - 2 -
2.2  运算符号    - 2 -
2.3  常见数学函数和表达式规则    - 3 -
2.4  程序语句    - 3 -
2.5  GUI介绍    - 5 -
3  大地坐标系和测量平面直角坐标系    - 7 -
3.1  大地坐标系    - 7 -
3.2  高斯平面直角坐标系    - 8 -
3.3  独立平面直角坐标系    - 9 - 源Z自-六+维L论W文W网^www.lwfree.cn
4  高斯投影    - 10 -
4.1  高斯投影定义    - 10 -
4.2  高斯投影特点    - 10 -
4.3  高斯投影分带    - 10 -
5  高斯投影计算    - 12 - 基于matlab的高斯投影换算+代码:http://www.lwfree.cn/shuxue/20191013/40816.html
------分隔线----------------------------